ISUTC: Matemática Geral, Ficha-IX (parte I)

12 de Maio -17 de Maio de 2024

Função Exponencial

1. Esboce o gráfico das funções que se seguem fazendo uma tabela de valores. Use a calculadora se necessário:

a)
$$f(x) = 2^x$$
 b) $g(x) = \left(\frac{1}{3}\right)^x$ c) $g(x) = 3e^x$ d) $h(x) = 2e^{-0.5x}$

2. Esboce ambas funções num único conjunto de eixos.

(a)
$$f(x) = 2^x$$
 e $g(x) = 2^{-x}$
(b) $f(x) = 3^{-x}$ e $g(x) = \left(\frac{1}{3}\right)^x$

(c)
$$f(x) = 4^x$$
 e $g(x) = 7^x$

3. Esboce o gráfico das seguintes funções, sem traçar os pontos, mas partindo apenas dos gráficos das famílias da função exponencial $f(x) = a^x$ para valores correspondentes de a. Indique o domínio, a imagem e as assímptotas.

a)
$$f(x) = -3^x$$
 b) $f(x) = 2^x - 3$ c) $h(x) = 2^{x-3}$ d) $h(x) = 4 + \left(\frac{1}{2}\right)^x$ e) $y = e^{x-3} + 4$

4. (a) Esboce o gráfico de
$$f(x) = 2^x$$
 e $g(x) = 3(2)^x$.

- (b) Qual é a relação entre os gráficos?
- 5. A função cosseno hiperbólica define-se por

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Esboce o gráfico da função $y = \frac{1}{2}e^x$ e $y = \frac{1}{2}e^{-x}$ no mesmo eixo e use a adição gráfical para esboçar o gráfico de $y = \cosh(x)$

6. A função seno hiperbólica define-se por

$$\cosh(x) = \frac{e^x - e^{-x}}{2}.$$

Esboce o gráfico desta função usando a adição grafical.

7. Use as definições do exercício 5 e 6 para provar as seguintes identidades.

a) $\cosh(-x) = \cos(x)$

b) $\sinh(-x) = -\sinh(x)$

c) $\left(\cosh(x)\right)^2 = -\sinh(x)$

d) $[\cosh(x)]^2 - [\sinh(x)]^2 = 1$

e) $\sin(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$

8. (a) Compare as taxas de crescimento das funções $f(x) = 2^x$ e $g(x) = x^5$ esboçando os gráficos de ambas funções nos seguintes rectângulos:

a) [0,5] por [0,20]

b) [0, 25] por $[0, 10^7]$ c) [0, 50] por $[0, 10^8]$

(b) Encontre as soluções das equações $2^x = x^5$, corrija para lugar de uma casa decimal.

9. Quando um certo medicamento é administrado para um paciente, o número de miligramas permanecendo na corrente sanguínea do paciente depois de t horas é modelado por

 $D(t) = 50e^{-0.2t}$.

Quantos miligramas de drogas permanecem na corrente sanguínea do paciente depois de 3 horas.

10. A população de uma certa espécie de pássaros é limitada pelo tipo de habitat necessário para aninhamento. A população comporta-se de acordo com o modelo logístico de crescimento

 $n(t) = \frac{5600}{0.5 + 27.5e^{-0.044t}},$

onde t mede-se em anos.

- (a) Encontre a população inicial de pássaros.
- (b) Esboce um gráfico da função n(t);
- (c) Qual o tamanho que a população se aproxima com o passar do tempo?

Função logarítmica

1. Expresse a equação na forma exponencial.

(1)a) $\log_5 25 = 2$

b) $\log_5 1 = 0$

(2) a) $\log_8 2 = \frac{1}{3}$

b) $\log_2 \frac{1}{8} = -3$

(3)a) $\ln(x+1) = 2$

b) $\ln(x-1) = 4$

2. Expresse cada equação na forma logarítmica.

(1) a) $5^3 = 125$

b) $10^{-4} = 0.0001$

(2) a)
$$4^{-3/2} = 0.125$$

b)
$$7^3 = 343$$

(3) a)
$$e^{x+1} = 0.5$$

b)
$$e^{0.5x} = t$$

3. Avalie as seguintes expressões

a)
$$\log_3 3$$

b)
$$\log_5 5^4$$

d)
$$\log_0^{\sqrt{3}}$$

e)
$$e^{\ln \sqrt{5}}$$

f)
$$\ln e^4$$

4. Use a definição de função logarítimica para encontrar x.

a)
$$\log_2 x = 5$$

b)
$$\log_2 16 = x$$

c)
$$\log_3 243 = x$$

a)
$$\log_2 x = 5$$
 b) $\log_2 16 = x$ c) $\log_3 243 = x$ d) $\log_x 3 = \frac{1}{3}$

5. Esboce o gráfico de $y = 4^x$, depois use este para esboçar o gráfico de $y = \log_4 x$.

6. Esobce o gráfico das funções que se seguem, sem esboçar pontos, mas começando dos gráficos $y = \log_a x$, para o valor correspondente de a para cada caso. Indique o domínio, imagem e assímptotas.

a)
$$f(x) = \log_2(x - 4)$$

b)
$$f(x) = -\log_{10}^{x}$$

c)
$$f(x) = \log_5(-x)$$

d)
$$y = \log_3(x-1) - 2$$

e)
$$y = 1 - \log_{10} x$$

f)
$$y = 1 + \ln(-x)$$

g)
$$y = |\ln x|$$

$$h) y = \ln|x|$$

7. Encontre o domínio das seguintes funções.

a)
$$f(x) = \log_2(x+3)$$

b)
$$f(x) = \log_2(x^2 - 1)$$

c)
$$f(x) = \ln x + \ln (2 - x)$$

d)
$$h(x) = \sqrt{x-2} - \log_2 (10 - x)$$

8. Esboce o gráfico das seguintes funções que se seguem e use estes para encontrar o domínio, assimptotas, e valores máximos e mínimos locais.

a)
$$y = \log_{10} (1 - x^2)$$
 b) $y = x + \ln x$

b)
$$y = x + \ln x$$

c)
$$y = x(\ln x)^2$$

$$d) y = \frac{\ln x}{x}$$

e)
$$y = x \log_{10} (x + 10)$$

9. Considere as funções $f(x) = \log_2(\log_{10} x)$ e $f(x) = \ln(\ln(\ln x))$.

- (a) Encontre o domínio das funções $f \in q$.
- (b) Encontre a inversa das funções $f \in g$.

(a) Encontre a inversa da função $f(x) = \frac{2^x}{1 + 2^x}$. 10.

(b) Qual é o domínio da inversa da função?